If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-2=6
We move all terms to the left:
x2-2-(6)=0
We add all the numbers together, and all the variables
x^2-8=0
a = 1; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·1·(-8)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*1}=\frac{0-4\sqrt{2}}{2} =-\frac{4\sqrt{2}}{2} =-2\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*1}=\frac{0+4\sqrt{2}}{2} =\frac{4\sqrt{2}}{2} =2\sqrt{2} $
| 3x-12=165 | | -8+v/5=-6 | | 85+7x-3=180 | | 2/3(3/4p+5/6=1/12 | | 19u-16u+4u-7u+3u=15 | | 7x(-11)+2x(-3)5x(-2)=180 | | 7x+3x-4x-5=31 | | 8x+3x-2x-5=31 | | 13a-2a+4a-11a=16 | | 18j+4j-22j+2j-j-1=10 | | {p}{4}+7=12 | | 15,16x-4,01=0 | | 9s-2s-6s=17 | | -18w+16w=14 | | -0.5(3y+1.3)=4.4 | | -0.5(3y+1.3)=4 | | 2/7x=54 | | 6p-1=10 | | 4y-4+3y=180 | | 2+10x=-178 | | 8z+5=6z+5 | | 3x-(x+2=4 | | (10x-4)=(1x-14) | | 3(2+x)=4(x-3 | | v/5+4=34 | | -1.2(-9.1-0.7w)=-3.6 | | -a=-15+24 | | 2m+m+1=16 | | 5x2=29 | | 9=u^2 | | 14d-15d-9d+8d=12 | | 14d−15d−9d+8d=12 |