If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-2x+40=80
We move all terms to the left:
x2-2x+40-(80)=0
We add all the numbers together, and all the variables
x^2-2x-40=0
a = 1; b = -2; c = -40;
Δ = b2-4ac
Δ = -22-4·1·(-40)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{41}}{2*1}=\frac{2-2\sqrt{41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{41}}{2*1}=\frac{2+2\sqrt{41}}{2} $
| 107=189-u | | 2x+27=3x+27 | | 5x-10-8x+18=2 | | 2x2+2x=12 | | 12x+5=8x+1 | | 3x-0.8=4x+4 | | 12=2x+6(x+6) | | 1/4x-1+x=14 | | x2=3x+10 | | -(9x+3)-1=-(x+4) | | 7x8^=21 | | b/2+2=5 | | 0=m^2+22m+121 | | 2n2=-8n | | 2(w‒5)=7w‒10‒5w | | 2(y-5)-5y=-4 | | 7x^=21 | | 2d2+7d-4=0 | | -3v-6=3(v-8) | | -3(9+n)=33 | | (x/5)+3=2 | | c2+7c+10=0 | | 4(k-9)=6(k+2) | | -4(u-2)=-2u-12 | | 1/4-1+x=14 | | 12+3/5m=27 | | x/18=3/12 | | 25n2-1=0 | | 3x+4x−7=21 | | 6(x-3x-9+1=-5x+7x-3 | | 8y-10=-6(y+4) | | 8=12-2g |