If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-40=0
We add all the numbers together, and all the variables
x^2-40=0
a = 1; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·1·(-40)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*1}=\frac{0-4\sqrt{10}}{2} =-\frac{4\sqrt{10}}{2} =-2\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*1}=\frac{0+4\sqrt{10}}{2} =\frac{4\sqrt{10}}{2} =2\sqrt{10} $
| 33-w=19 | | 0.1x-21=180 | | y=821(1-0.15)^6 | | -6+6u=8u | | 3(3x+4)=15=45 | | 19=w-33 | | -42=y/(-3)-20 | | 96-2x+6=x | | 3x+1+5x+1=90 | | G(x)=4x^2- | | 6d+1+39+28=180 | | 15c-c-4c=20 | | (x*x)-4x=-2 | | 15x-22=5x+48 | | 12-3z=3(z-4) | | 15w-16w+14w-15w=10 | | 2h=-7h-9 | | Y=2.6x+88 | | 4x+12+5x=-4 | | 33.5+2y=7y+19 | | 4k+5k-19k=10 | | -6+3v=10+7v | | -6(x-3)=33 | | 96=12d | | 5x+39=2x+59 | | 9x-12+30=180 | | 3w/7+w/14=3.5 | | 5x-18=6x-11 | | 9-8n=-3-5n | | 2(3x+5)=-33+1 | | −3x2=27 | | 6x-6=4x+32 |