x2-4x+4=(1-x)(x-2)

Simple and best practice solution for x2-4x+4=(1-x)(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2-4x+4=(1-x)(x-2) equation:



x2-4x+4=(1-x)(x-2)
We move all terms to the left:
x2-4x+4-((1-x)(x-2))=0
We add all the numbers together, and all the variables
x2-4x-((-1x+1)(x-2))+4=0
We add all the numbers together, and all the variables
x^2-4x-((-1x+1)(x-2))+4=0
We multiply parentheses ..
x^2-((-1x^2+2x+x-2))-4x+4=0
We calculate terms in parentheses: -((-1x^2+2x+x-2)), so:
(-1x^2+2x+x-2)
We get rid of parentheses
-1x^2+2x+x-2
We add all the numbers together, and all the variables
-1x^2+3x-2
Back to the equation:
-(-1x^2+3x-2)
We get rid of parentheses
x^2+1x^2-3x-4x+2+4=0
We add all the numbers together, and all the variables
2x^2-7x+6=0
a = 2; b = -7; c = +6;
Δ = b2-4ac
Δ = -72-4·2·6
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-1}{2*2}=\frac{6}{4} =1+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+1}{2*2}=\frac{8}{4} =2 $

See similar equations:

| (x^2-9)(3x+6)=0 | | (+x^2-9)(3x+6)=0 | | (x2-9)(3x+6)=0 | | 8x2+9=0 | | 4x-2(3x-7)=5x-7 | | 2x2-34=0 | | 40-3y=28 | | 5y-7/12-y-5/8=5 | | 2x+3=7(x+4) | | 3(2-5x)+3+x-(1+2x)=5x+7 | | 40-2y=26 | | 13(y-0.7)-1.2(y+10)=50y-97.5 | | 40-3y=25 | | x/0.75=135 | | 7+4x/2=x/2 | | 5+8+7=5x | | 3x+45=10x-4 | | 5x-28=28 | | -17-(4x-1)+5*1/3(2-x)=6*1/2 | | 3(4x+8)=5(5x+4) | | 4x-x=135 | | x-4x=-28-14 | | 4x+18=x+5 | | 81x3+100x=180x2 | | 5x+7=19=3x | | 2x+6x=60 | | 8s^2=4s | | 10x-4x=31+3 | | 2x-3/5x-4=2x+1/5x+20 | | -2x²+11x-12=0 | | Y/3x=3/4 | | (2x-4)(5x-5)=0 |

Equations solver categories