x2-5/2=15

Simple and best practice solution for x2-5/2=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2-5/2=15 equation:



x2-5/2=15
We move all terms to the left:
x2-5/2-(15)=0
determiningTheFunctionDomain x2-15-5/2=0
We add all the numbers together, and all the variables
x^2-15-5/2=0
We multiply all the terms by the denominator
x^2*2-5-15*2=0
We add all the numbers together, and all the variables
x^2*2-35=0
Wy multiply elements
2x^2-35=0
a = 2; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·2·(-35)
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{70}}{2*2}=\frac{0-2\sqrt{70}}{4} =-\frac{2\sqrt{70}}{4} =-\frac{\sqrt{70}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{70}}{2*2}=\frac{0+2\sqrt{70}}{4} =\frac{2\sqrt{70}}{4} =\frac{\sqrt{70}}{2} $

See similar equations:

| x+68+2x-68=180 | | 2=x/3+6 | | ÷3(10+2x)=4 | | 2x+21=31 | | x+68=2x-68=180 | | 249=0.04x+9 | | (10+2x)÷3=4 | | x+3+6=16 | | 3x^2-16=180 | | 5x+3(2x-3)=9x-5+2x | | 4x-7-2x=5 | | x+2x+4x=7x= | | x-22=2x-60 | | x3+3x2-5x-15=0 | | 11x-48=7x | | 3x-42=5x-100 | | x+2x+4x=7x=14 | | 9(w-9)-2=-7+7(w-8 | | 9x+8-12=3x+2 | | 5x-79+4x-92=180 | | 8x-6=5x+128x−6=5x+12 | | 5x+18-3x=20+6 | | 20+71=56=3a | | X(6)+y=10 | | 5x-34=10x-79 | | 3/5t-6=18 | | f-(-4)=12=f | | 2x2+-49=1 | | 3x2-7x-12=0 | | -23+5a=-13 | | -4u^2=48 | | 7y-30=5y |

Equations solver categories