If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-55=26
We move all terms to the left:
x2-55-(26)=0
We add all the numbers together, and all the variables
x^2-81=0
a = 1; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·1·(-81)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18}{2*1}=\frac{-18}{2} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18}{2*1}=\frac{18}{2} =9 $
| 1/3(x+1)=2x+2 | | 9(x+5)+6=-12 | | 3x-2+5x+7+12+15x-11=180 | | 0=-16f^2+4096 | | -6.9=-12.2+n | | 102+31+x=180 | | 10^x=10x | | y-9.6=6.24 | | 0=-16f^2+144 | | 6x+10=4(x-5) | | -9+5i/3-i=0 | | -s-8+3s=3s-3 | | P=1.50n-500-700 | | f(3)=2-7 | | 2.5x+3=1.5x+4 | | 0=-16f^2+6400 | | 45/6=x/10 | | 4x+10=-7x-1 | | 2-5(3x+7)=14 | | x-3+40=180 | | 2r+9=5r-8-4 | | (6/11)^2=x | | x-3+40+x=180 | | -1=s/5 | | -4x+16=60 | | x-27=94 | | 4x+21=49 | | c+-9=-10 | | 5(-4+7x)=120 | | 4(3x+6)=-28+16 | | 3+4j=-7+9j | | –2w=–w+4 |