If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-60x-90=0
We add all the numbers together, and all the variables
x^2-60x-90=0
a = 1; b = -60; c = -90;
Δ = b2-4ac
Δ = -602-4·1·(-90)
Δ = 3960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3960}=\sqrt{36*110}=\sqrt{36}*\sqrt{110}=6\sqrt{110}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-6\sqrt{110}}{2*1}=\frac{60-6\sqrt{110}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+6\sqrt{110}}{2*1}=\frac{60+6\sqrt{110}}{2} $
| 8(w+2)=58 | | y^=96 | | -3(3x•5)=34+12X | | 3d+26=5d+8 | | 0.6x-2.1=1.8x+2.8 | | 17=7k-11 | | 4=p+23/7 | | 4(5x-3)=3(-3x-4) | | 2s+10+s➖1+36=180 | | (Y-3)=2(x-6) | | Y=-80x+1200 | | 4.5=x2.4 | | ½m+6=21 | | 3u+6u+u+30=180 | | +1/2x+3/4=-5/6 | | 7x+(-25x)=18 | | 10x-4x=-54 | | 2w+w+15+78=180 | | 2n+15=21 | | 5c+45+70=180 | | .2(10+x)=12 | | 2y+2y+40=180 | | (3x+15)-32=180 | | 3x+4+7x-20=180 | | 2a+4a+48=180 | | 6x-8+7x-20=180 | | 85x28=2380 | | 6t+3t+54=180 | | 14u+9u+42=180 | | 3p+2p+55=180 | | 5x-23=2x+18 | | x^2+9x+1=-17 |