If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-x=137
We move all terms to the left:
x2-x-(137)=0
We add all the numbers together, and all the variables
x^2-1x-137=0
a = 1; b = -1; c = -137;
Δ = b2-4ac
Δ = -12-4·1·(-137)
Δ = 549
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{549}=\sqrt{9*61}=\sqrt{9}*\sqrt{61}=3\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-3\sqrt{61}}{2*1}=\frac{1-3\sqrt{61}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+3\sqrt{61}}{2*1}=\frac{1+3\sqrt{61}}{2} $
| -6−3k=-k | | 9.16p-11=24+7.16p | | (3^9x=27 | | 1/2(x−52)=13+7x | | -6j=-5j+8 | | 10+9r=190 | | 7z=-6+6z | | x^2−9x−17=0 | | 7=-20+p | | 5+3*(x-3)=8-3x | | 5+3c=4c | | X^+2x=3x+12 | | -5(n-4)=90 | | 10x+30=5x+32 | | 8v+45=45=5(v+6) | | x3•x2= | | −5(3x−35)=2(x−7)−15 | | -2h+6=-5h | | 75=4(1+3v)-1 | | 75=4(1+3v) | | 3(2)+p=7.9 | | -5x+2+3x=-12 | | -9−10p=-p | | 1=x-3-2x | | -36=-17+m | | (w-2)^2-48=0 | | k=3k+8 | | -100=-5(3p+2) | | X2-x=99 | | 1/4r+5/2=r-4 | | x+139=537 | | m^2=5m=0 |