If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=-9x=8
We move all terms to the left:
x2-(-9x)=0
We add all the numbers together, and all the variables
x^2-(-9x)=0
We get rid of parentheses
x^2+9x=0
a = 1; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·1·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*1}=\frac{-18}{2} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*1}=\frac{0}{2} =0 $
| x^2-3x+264=0 | | 6-6=9x+8x | | 9-3n(n-5)=30 | | 6u+30=16u+20 | | x+5(x)=39612 | | .5(4d-2)-d=5 | | 6z=13-43 | | 1/2x+1/3=1/3x | | 8/12(n-10)=64 | | 9p=24p+40 | | (6x)+7=5x | | 67+v+(2v-11)=180 | | 9x+6=-3+5x+17 | | -8y-14=9y+20 | | x+x+5809=210355 | | Y=4x^2-20x+4 | | -4.5=-2x-8x | | 14t^2=2t | | 20w−19w−1=6 | | 3z+32+(z-4)=180 | | 20w−19w−1=6w= | | 3+3=x+3 | | 2x+21=9x-14 | | 58+2p+42=180 | | .6x+24=6 | | 2/5=v | | w+18+6w+1+6w+5=180 | | 14-2/3x=0 | | 5z=25;z=5 | | 9x^2+11x-2=0 | | 3w-2=6w+20 | | 5x-23=2x-5 |