If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=1519
We move all terms to the left:
x2-(1519)=0
We add all the numbers together, and all the variables
x^2-1519=0
a = 1; b = 0; c = -1519;
Δ = b2-4ac
Δ = 02-4·1·(-1519)
Δ = 6076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6076}=\sqrt{196*31}=\sqrt{196}*\sqrt{31}=14\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{31}}{2*1}=\frac{0-14\sqrt{31}}{2} =-\frac{14\sqrt{31}}{2} =-7\sqrt{31} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{31}}{2*1}=\frac{0+14\sqrt{31}}{2} =\frac{14\sqrt{31}}{2} =7\sqrt{31} $
| 9r-8=73 | | -4680=-72x | | -27=-x+9 | | x^2=169/441 | | X-45=7(2x+3)-14 | | 10=x+11+2x+29 | | 9+10y-10y=-3+4y | | -8+5k-9-4k=7+3k | | -11=-x+6 | | (4/5)^n=64/125 | | x+2.5=22 | | 4x+15=15x+10 | | x-4(2x-8)x=-6 | | −33+8x=−3(3x+6)+2 | | 4x-17+6x+8=180 | | 1176=52.5b | | 3(2x+2)–3x=6-3x | | 3n+(-7)=2n+4 | | 3n-7=2n+4 | | -4+5a+7-3=3a-6 | | 15=2x-2+2x-11 | | 10s-5=0 | | 3n+7=2n+4 | | -6(x+7)+47=14-7x | | 0.75p+2.50=11 | | y/4.42=1.5 | | 3x+28+2×-8=45 | | 129.8=p+41.8 | | m–3=-5 | | 14=4x+2+2+x | | m+5=24 | | 3.8x(x)=19 |