If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=184/35
We move all terms to the left:
x2-(184/35)=0
We add all the numbers together, and all the variables
x2-(+184/35)=0
We add all the numbers together, and all the variables
x^2-(+184/35)=0
We get rid of parentheses
x^2-184/35=0
We multiply all the terms by the denominator
x^2*35-184=0
Wy multiply elements
35x^2-184=0
a = 35; b = 0; c = -184;
Δ = b2-4ac
Δ = 02-4·35·(-184)
Δ = 25760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25760}=\sqrt{16*1610}=\sqrt{16}*\sqrt{1610}=4\sqrt{1610}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{1610}}{2*35}=\frac{0-4\sqrt{1610}}{70} =-\frac{4\sqrt{1610}}{70} =-\frac{2\sqrt{1610}}{35} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{1610}}{2*35}=\frac{0+4\sqrt{1610}}{70} =\frac{4\sqrt{1610}}{70} =\frac{2\sqrt{1610}}{35} $
| 17y+13=47 | | -3,1/3=-1/2g | | 30x+25x+10x=100 | | 4n^2+2n-2550=0 | | 6x-2/5x=4x/7x | | 3x+2.5x+x=100 | | 2y=8+4 | | (0)=2x+2 | | 7x4=16 | | x2/4–3/5=5/7 | | (3x−5)=(3x+6) | | 5x+7=-3x | | 4+8(5x+10)=444 | | (4.75+x)/2=3.5 | | (2x+5)/(3-5x)=0 | | 35/5=x/4 | | (3x-5)=(5x+1) | | -x-133=161-7x | | 18x+90=18 | | 2x+4.20=9 | | 4=52–8n | | 7.5(b-4)=10b+5 | | -x-6=x+6 | | 2x-16+4x=44 | | 3n-5=-29 | | 2x+41=7x-19 | | v-15=15-27 | | 3=-2/5x+13 | | -15=-3+x | | 36+14x=-34 | | m^2+11-5=7 | | 4x-4+x+5=13+2x-3 |