If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=1964
We move all terms to the left:
x2-(1964)=0
We add all the numbers together, and all the variables
x^2-1964=0
a = 1; b = 0; c = -1964;
Δ = b2-4ac
Δ = 02-4·1·(-1964)
Δ = 7856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7856}=\sqrt{16*491}=\sqrt{16}*\sqrt{491}=4\sqrt{491}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{491}}{2*1}=\frac{0-4\sqrt{491}}{2} =-\frac{4\sqrt{491}}{2} =-2\sqrt{491} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{491}}{2*1}=\frac{0+4\sqrt{491}}{2} =\frac{4\sqrt{491}}{2} =2\sqrt{491} $
| 11+5x=49 | | 3x+1=6x+37 | | y=0.860(25)+3.302 | | 31=x+17 | | (7x+10)+(5x+11)=45 | | 0.7x-1.2=0.4(2x-1) | | 7x+10+5x+11=45 | | 4.5-1.5(6m=2)=6 | | 27-18x=-26 | | 7y-5y-7=32.92 | | -32=-14+k | | 0.02(y-4)+0.08y=0.14y-0.01(30) | | 230=(2/5)x | | 1/4(8c-16)=4c-10 | | d/12+1,080+d/8=1,320 | | 2(1y+-9)=-28 | | 14y-9y-7=85.95 | | 19=p-(-19) | | 2y-17=121 | | X+(5x-1=7 | | 11x-3=5×+11 | | 4x-12=36. | | 15y=12y=12 | | A(t)=8t+11 | | 9x-12=-5 | | 3x+4×(x+6)=10x+123x | | 150/x=5 | | 9x-5x³=0 | | 18y-42=48 | | -4=-3+p/5 | | 10-3|n|=1 | | -13/4x-1/4=-x+1/2 |