If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=25784
We move all terms to the left:
x2-(25784)=0
We add all the numbers together, and all the variables
x^2-25784=0
a = 1; b = 0; c = -25784;
Δ = b2-4ac
Δ = 02-4·1·(-25784)
Δ = 103136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{103136}=\sqrt{16*6446}=\sqrt{16}*\sqrt{6446}=4\sqrt{6446}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6446}}{2*1}=\frac{0-4\sqrt{6446}}{2} =-\frac{4\sqrt{6446}}{2} =-2\sqrt{6446} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6446}}{2*1}=\frac{0+4\sqrt{6446}}{2} =\frac{4\sqrt{6446}}{2} =2\sqrt{6446} $
| 3(1−2n)=33 | | 2.3x=-6.4x | | 28=3x2 | | 18=3x2 | | 1/3(-6k+30=2+12k | | 3s-7=5 | | x(x-4)=84 | | 4x-10=5x-1 | | 2y+31=8+7y | | c-93/2=2 | | n-30/5=9 | | 6k-(3+k)=-(5k+3) | | d+0.21d=1.21d | | -5(4n-1)=10 | | –7(2b–4)=5(–2b+6) | | 4y+(-24)=10 | | 12k-13=59 | | h+15/4=5 | | -5(4+3x)=2+(x-2) | | 5(3+v)+39v=14v | | Z^2-3.5z+1.5=0 | | b^-6b=0 | | -5(4-3b)=6b+43 | | 9n+3=57 | | .25x=-5+0.75+1.28 | | -4+4b=b^2 | | .025x=-5+0.75+1.28 | | 9n+3=37 | | c+23/7=7 | | -2x+3=-2(×-5) | | 11-x=1-x | | 1y+4+8y=7+9y+7 |