If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=2581
We move all terms to the left:
x2-(2581)=0
We add all the numbers together, and all the variables
x^2-2581=0
a = 1; b = 0; c = -2581;
Δ = b2-4ac
Δ = 02-4·1·(-2581)
Δ = 10324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10324}=\sqrt{4*2581}=\sqrt{4}*\sqrt{2581}=2\sqrt{2581}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2581}}{2*1}=\frac{0-2\sqrt{2581}}{2} =-\frac{2\sqrt{2581}}{2} =-\sqrt{2581} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2581}}{2*1}=\frac{0+2\sqrt{2581}}{2} =\frac{2\sqrt{2581}}{2} =\sqrt{2581} $
| 7=3a=12+2a | | -3x-(x+6)=-2-2(3x+3) | | 5x-5+10=25 | | |8+2x|-8=-18 | | 7x+5-4=23 | | 10x-7+5x+14=4x-5 | | 3x+2,8=296 | | -4(-4y+6)-4y=2(y-2)-4 | | 4(m-5)+2=14 | | 45-x=3/5 | | 2y+5y-4=-3y+3+5 | | 9x+8=2x+4 | | 3(y+9)=12y+133(y+9)=12y+13 | | 9x3+12=15x3-6 | | -7x-3x+30=-15x-4 | | 6z+5=3z−7 | | 6x-20=2(2x+32) | | -4(3n-8)-30=-2(-3n-1) | | 2(y−6)+3=4y−7 | | 5z+8=3z16 | | 10c+8-6=13c-7 | | y=9(6y+(30-17)) | | x-4=-4;x=-2,4,6 | | -3x-2x+11=-5x-6 | | 13/1+2/g=7/1 | | 2(x+39)=4x-2 | | 1/2a+7=1 | | 1/3=2(x-6) | | b/11-b3/11=18/11 | | 3-x(-9)=27 | | -81=-3+6(m-8) | | -4=2/9m |