x2=31/121

Simple and best practice solution for x2=31/121 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2=31/121 equation:



x2=31/121
We move all terms to the left:
x2-(31/121)=0
We add all the numbers together, and all the variables
x2-(+31/121)=0
We add all the numbers together, and all the variables
x^2-(+31/121)=0
We get rid of parentheses
x^2-31/121=0
We multiply all the terms by the denominator
x^2*121-31=0
Wy multiply elements
121x^2-31=0
a = 121; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·121·(-31)
Δ = 15004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15004}=\sqrt{484*31}=\sqrt{484}*\sqrt{31}=22\sqrt{31}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{31}}{2*121}=\frac{0-22\sqrt{31}}{242} =-\frac{22\sqrt{31}}{242} =-\frac{\sqrt{31}}{11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{31}}{2*121}=\frac{0+22\sqrt{31}}{242} =\frac{22\sqrt{31}}{242} =\frac{\sqrt{31}}{11} $

See similar equations:

| 56x+7=2x–4 | | 7-8x=x-7 | | -5/3=6/7v-5/2 | | –2z+8=–z | | 1/6(x-1/5)=17/15 | | 2+{x}{2}+{3x}{8}=16 | | 18=3(2x- | | j+45=866 | | 2+4h=8+h | | 2x-12+2x-16=12 | | 2(u+8)=-2(7u-3)+2u | | 35−4(2w+1)=11w−4(11+w) | | 2x+23=7x+17=180 | | -8(p-2)+p=4(p=3)+5 | | 2(x-6)=14x-60 | | -x+8–3x=12–8x–4 | | 27.82=5g+3.52 | | 60+x=1200 | | 11.77-18.3t=-9.15-16.7t+19.8 | | (2x+1)*2=9x-128 | | -8(p-2)+p=4(p=3)+ | | 2(5x+3)=2x+15-x | | 2x+23=7x+17 | | 6+2x-3=3x-4 | | 2v=594 | | 92(0.2)+95(0.3)+88(0.2)+x(0.3)=90 | | 9c+8=-19 | | -13+7=2(x+6) | | 5b-13+3b=11 | | x(-10)=5 | | 8+60+60+2y-6=180 | | 40+.10x=20+.15x |

Equations solver categories