If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=3895
We move all terms to the left:
x2-(3895)=0
We add all the numbers together, and all the variables
x^2-3895=0
a = 1; b = 0; c = -3895;
Δ = b2-4ac
Δ = 02-4·1·(-3895)
Δ = 15580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15580}=\sqrt{4*3895}=\sqrt{4}*\sqrt{3895}=2\sqrt{3895}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3895}}{2*1}=\frac{0-2\sqrt{3895}}{2} =-\frac{2\sqrt{3895}}{2} =-\sqrt{3895} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3895}}{2*1}=\frac{0+2\sqrt{3895}}{2} =\frac{2\sqrt{3895}}{2} =\sqrt{3895} $
| 40x+960x-15=25(40x+48) | | 50+0.75m=180 | | -51-x=-40 | | 1.8(x-1)=1.2(x+3) | | 40x+96x-15=25(40x+48) | | 10/2x=15/x | | (x-7)/(x-5)=-3 | | Y=-4x^2+100 | | Y=-4x^2-100 | | Y=4x^2+100 | | -25=10k-5 | | -7x+2x-3=12 | | 13.7=x+2.1 | | 150m-100m+38,000=40,600-150m | | X+39=x+126 | | x=795478956342957834-435897453789534789 | | 19.1=4.7+x | | x=5783494537853478267863456735245349 | | 4x+3-7x=18 | | –20=v–4+ –16 | | 17x-5=12+15x | | -3(y+7)=-9y+21 | | 8=20-4s | | (9-i)=+(-6+7i) | | 7n²+16n=8n+2n² | | 7=9+4/3x | | 6x+9-2x+4=57 | | x-(2x-4)=-3(5-2x)+12 | | 6x²-5x+5=0 | | 25x2+40x+16=0 | | 5x2+2x-2=0 | | -5|y+4|=-50 |