If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=49100
We move all terms to the left:
x2-(49100)=0
We add all the numbers together, and all the variables
x^2-49100=0
a = 1; b = 0; c = -49100;
Δ = b2-4ac
Δ = 02-4·1·(-49100)
Δ = 196400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{196400}=\sqrt{400*491}=\sqrt{400}*\sqrt{491}=20\sqrt{491}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{491}}{2*1}=\frac{0-20\sqrt{491}}{2} =-\frac{20\sqrt{491}}{2} =-10\sqrt{491} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{491}}{2*1}=\frac{0+20\sqrt{491}}{2} =\frac{20\sqrt{491}}{2} =10\sqrt{491} $
| 1 = r2– 2 | | 7x+7=7(x+3) | | -40y=5 | | 8/9(54x-36)+2=-3/4(-40+16)+90x | | 13-(x+5)=4x(6x-5) | | 5z-32=4z-19 | | -5(t+4)-4(-2t-7)=2(t+2)-7 | | -x+4=5x+40 | | (3/4)(2x-1)-5=(5/4)(x-3) | | 92x=3492x=34 | | 5/7=3x/7 | | 10+5x=7x+2 | | 3/8+b/3=8/9 | | -8(z-4)-(9-3z)=-6z | | 5x-2+x=9+3x=10 | | 4(s+3)-1=3(25+1)+5 | | y^=6y | | 3(8–4x)=6(x–5) | | 1.3x+.2=2.7-4.3x | | (2x-3)/(3x-2)=0 | | x+1-4x=10-5x-x | | t+7=3(t–19) | | 24x+26=24x | | 9(y+4)=2+8y | | 5(x+7)+8=5x+4 | | 44/x=9.4 | | 5+2u=15 | | (t-7)^2+18=9 | | 88=5x+1/4 | | 0.875y+0.125=-0.125y+0.25 | | 37.03=6x+3.61 | | 5w-22=w+6 |