If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=49169
We move all terms to the left:
x2-(49169)=0
We add all the numbers together, and all the variables
x^2-49169=0
a = 1; b = 0; c = -49169;
Δ = b2-4ac
Δ = 02-4·1·(-49169)
Δ = 196676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{196676}=\sqrt{4*49169}=\sqrt{4}*\sqrt{49169}=2\sqrt{49169}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{49169}}{2*1}=\frac{0-2\sqrt{49169}}{2} =-\frac{2\sqrt{49169}}{2} =-\sqrt{49169} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{49169}}{2*1}=\frac{0+2\sqrt{49169}}{2} =\frac{2\sqrt{49169}}{2} =\sqrt{49169} $
| 13(17x-23)^2=156 | | 25+12x=6x+4 | | 21=-6x | | -3-4(7-4x)=81 | | 4+13(17x-23)^2=160 | | 5m-58=0 | | 4(v-4)=-5v-25 | | 7u+39=3(u+9) | | -6u-6=-3u+15 | | -8=~3+m/3 | | 8n−8=60 | | 5x+11=35-7x | | 3+6(n+8)=93 | | 12=2l+1 | | D=9/4(m-35) | | -100=-6(-2r+4)-4 | | -6u-6=3(u+5) | | |4a+11|=-2a | | 17=(x-1)-(x-6) | | -1=z/3-3 | | Y=8(2+x) | | -6u-6=3u+15 | | -28-4p=-4p-7(-4-4p) | | -8(b-97)=8 | | -4(1+2b)=-20-4b | | x/3(x+1)=2(x-1) | | 695-8v)+12=-10 | | 12k+24=18k | | 5e+13=-65 | | -42x-49=130 | | -36-3k=-3(7k-6) | | 10x+70=-2x+-120 |