If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=4936
We move all terms to the left:
x2-(4936)=0
We add all the numbers together, and all the variables
x^2-4936=0
a = 1; b = 0; c = -4936;
Δ = b2-4ac
Δ = 02-4·1·(-4936)
Δ = 19744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19744}=\sqrt{16*1234}=\sqrt{16}*\sqrt{1234}=4\sqrt{1234}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{1234}}{2*1}=\frac{0-4\sqrt{1234}}{2} =-\frac{4\sqrt{1234}}{2} =-2\sqrt{1234} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{1234}}{2*1}=\frac{0+4\sqrt{1234}}{2} =\frac{4\sqrt{1234}}{2} =2\sqrt{1234} $
| 1=2q−7 | | -5(6x-3)=-30x-15 | | F=9/5c+37 | | 7b-8=-8+7b | | 4h-h-h=8 | | 4+8y=8y+4 | | 4(2x+5)=-43+39 | | 18/5=54/x | | 7z+2=9+7z | | 90=x-10+4x-10 | | 12p+5p+2p-12p=14 | | 0.2(x+15)=T | | 8-7b=15b-3 | | F=0.25(x-1)+2 | | -8p-7=-8p+4 | | -13b+14b-6b=20 | | x²-3x-850=0 | | 3(a+5)=a | | |3x+5|=-18 | | -4-9f=-10-10f | | -10-5f=-5f-10 | | A=-36+-5a | | 9k-6k+2k+2k-4k=3 | | 16w=6w+6w | | (X+5)(3x)=180 | | 4x+4=+31 | | 5p10= | | 5/1/2x+2=3/1/2x+14 | | 7k=6k+k | | 8n–2(n+5)=-3+6n | | 10-4b=-2b-10 | | 1-2k=9k |