If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=565.44
We move all terms to the left:
x2-(565.44)=0
We add all the numbers together, and all the variables
x^2-565.44=0
a = 1; b = 0; c = -565.44;
Δ = b2-4ac
Δ = 02-4·1·(-565.44)
Δ = 2261.76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{2261.76}}{2*1}=\frac{0-\sqrt{2261.76}}{2} =-\frac{\sqrt{}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{2261.76}}{2*1}=\frac{0+\sqrt{2261.76}}{2} =\frac{\sqrt{}}{2} $
| x2=565.44 | | x2=565.44 | | x2=565.44 | | x2=565.44 | | x2=565.44 | | p÷12=-4 | | 8(z+3)=8(z+3)= | | 100b=50 | | G(5)=-4x^2-3x-7 | | G(5)=-4x^2-3x-7 | | t^2-42t=0 | | t^2-42t=0 | | t^2-42t=0 | | t^2-42t=0 | | t^2-42t=0 | | 1=y/9+4 | | 9/2-3y=15 | | 2^(3x-1)=5(2x+2) | | 2^(3x-1)=5(2x+2) | | 2^(3x-1)=5(2x+2) | | -10y+20=50 | | -10y+20=50 | | -10y+20=50 | | g+4=63 | | (g+7)=63 | | g+7=63 | | 23+9x=9+2x | | 23+9x=9+2x | | 3n^2-15n-8=0 | | 3n^2-15n-8=0 | | 3n^2-15n-8=0 | | 3n^2-15n-8=0 |