If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=63
We move all terms to the left:
x2-(63)=0
We add all the numbers together, and all the variables
x^2-63=0
a = 1; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·1·(-63)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{7}}{2*1}=\frac{0-6\sqrt{7}}{2} =-\frac{6\sqrt{7}}{2} =-3\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{7}}{2*1}=\frac{0+6\sqrt{7}}{2} =\frac{6\sqrt{7}}{2} =3\sqrt{7} $
| v/3-14/15=v/5 | | 6x+3x=57 | | -34-8x=-2+20 | | 0.25x+7=4(x+2) | | 3(x−4)=181 | | 32=r-54 | | 13+2w+7=64 | | 40x=176 | | 12.84-b=3.25 | | F(x)=50x+6 | | 3(6x-2)=22x+6 | | (1/6)^-r=216^3r+2 | | 8m-12=-79 | | 11=x+(-7) | | 1.5r=−5.07 | | 5x•5=40 | | 30t-4.905t^2=0 | | 0=-16^2+7t+80 | | 6(x-5)=x+25 | | -2d+17=29 | | 10(x+4)=x+139 | | 12x-14=2x+106 | | 22x=16+3(5x+4 | | −2(1+6x)−2x=−72 | | -34-8x=2x+20 | | (x-4)(-2/5)=-4/5 | | g/4=-5 | | 2x+7=7x-43 | | x*8.33333=11.666666 | | x+7=2x–15 | | 4x-9=x+24 | | 4/(x−7) =5 |