If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=784
We move all terms to the left:
x2-(784)=0
We add all the numbers together, and all the variables
x^2-784=0
a = 1; b = 0; c = -784;
Δ = b2-4ac
Δ = 02-4·1·(-784)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*1}=\frac{-56}{2} =-28 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*1}=\frac{56}{2} =28 $
| 10=(3.14/4)/x | | -8.8(x-3.75)=26.4 | | 9x+10=3x+34 | | x+19.00x=50 | | 9x10=3x+34 | | 5/6c=2/12 | | 6d+11=4d-7 | | -3(x-1)+8(8-3)=6x+7-5 | | 4x2-x+5=0. | | 3(1+3x)=2(-4+7) | | -10m+7=-7-11 | | 2(x+19)=5x+8 | | p/8=7/9p= | | 9a–2=–2 | | 8t+1=3t—19 | | 10,544=P(1+0.053x6) | | 4z-10=7z-31 | | 3=-2(-1/4s+5)+3 | | 8+5m=8m+32 | | -3(x-4)+x=2x-112 | | b-6/4=b+8/3 | | (1.045)^x=2 | | w-16=3.4 | | -8n+4(1+5n)=-6 | | 3(v-4)=8v+13 | | 6u-12=9(u-3) | | 0.166666667x-7=-6 | | x+8=9*6-10 | | 13.75x+13.75(0.04)=20.8 | | 8v-8=4(v+8) | | 2x+x+(2x+12)=62 | | 13.75x+13.75x(0.04)=20.80 |