x2=81144

Simple and best practice solution for x2=81144 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2=81144 equation:



x2=81144
We move all terms to the left:
x2-(81144)=0
We add all the numbers together, and all the variables
x^2-81144=0
a = 1; b = 0; c = -81144;
Δ = b2-4ac
Δ = 02-4·1·(-81144)
Δ = 324576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{324576}=\sqrt{7056*46}=\sqrt{7056}*\sqrt{46}=84\sqrt{46}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84\sqrt{46}}{2*1}=\frac{0-84\sqrt{46}}{2} =-\frac{84\sqrt{46}}{2} =-42\sqrt{46} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84\sqrt{46}}{2*1}=\frac{0+84\sqrt{46}}{2} =\frac{84\sqrt{46}}{2} =42\sqrt{46} $

See similar equations:

| x+11/4=-5/8 | | 9x+9(6)=36 | | +2M)+y(–1N)=0 | | 10x+70=160 | | 1+6g=2(g+2) | | x2=9/4 | | 6x+18=-54 | | 2z+7=7z+2 | | 8x+4=-3x+15 | | 2z+7=7z-2 | | 3.1+10m=7.26 | | 36=17+b+17 | | 4s+11=70 | | 7-8W=-5w-9 | | (4x-3)=5x-18 | | 8x+4=-3x+6+11x | | 3x+10x+15x=30 | | 2z+13=60 | | 8x+4=-3x+4+11x | | 1-x^-2=0 | | X^2-18x+83=-3 | | 4r+11=6r-3 | | 11–7x=67 | | 5c+1=51 | | 6y+2=74 | | 8x+3x=36 | | 10X10X10y-460=3(10X10y+80) | | 2/b=2.4/10.8 | | 13/4=1/4x+3/4 | | 3x-5(x-2)=-8+5x-3 | | 3/4z+75=73 | | 5p-12=6p-9 |

Equations solver categories