If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=9100
We move all terms to the left:
x2-(9100)=0
We add all the numbers together, and all the variables
x^2-9100=0
a = 1; b = 0; c = -9100;
Δ = b2-4ac
Δ = 02-4·1·(-9100)
Δ = 36400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{36400}=\sqrt{400*91}=\sqrt{400}*\sqrt{91}=20\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{91}}{2*1}=\frac{0-20\sqrt{91}}{2} =-\frac{20\sqrt{91}}{2} =-10\sqrt{91} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{91}}{2*1}=\frac{0+20\sqrt{91}}{2} =\frac{20\sqrt{91}}{2} =10\sqrt{91} $
| 0=2x2-8x+8 | | 16/5x=8 | | 3846.5=3.14r^2 | | 4(y-7)=-6-48 | | H=-16t^2+68+ | | 10^x=16 | | 4(8-4)=6(6*x) | | 1.50x=0.75x+12 | | 24x-3+2=24x-4 | | 7^x=10 | | 20k+3k-20k=3 | | 2.25^x=5 | | 3x+2(4x-5)=0 | | 3x+58=5x+42 | | x=3/4(x-1) | | (9x/5)+(8x+15)=180 | | -4v=+5=-3-3v | | r=6.7=1.2 | | 0.03m=12 | | 15n-2=43 | | 2x=10235 | | 10-(7x-2)-1=8 | | I-y=4 | | 3x+17x-1=5(4x+8) | | 17j-15j=14 | | 2(x-2)+3(x+3)=90 | | z+67/5=-1 | | -135+8g=2g | | 17x-2x(3-2)=45 | | 0.013=h=14 | | (2/3)x+3/4=5 | | -132+5=-3-3v |