x2=9256

Simple and best practice solution for x2=9256 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2=9256 equation:



x2=9256
We move all terms to the left:
x2-(9256)=0
We add all the numbers together, and all the variables
x^2-9256=0
a = 1; b = 0; c = -9256;
Δ = b2-4ac
Δ = 02-4·1·(-9256)
Δ = 37024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{37024}=\sqrt{16*2314}=\sqrt{16}*\sqrt{2314}=4\sqrt{2314}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2314}}{2*1}=\frac{0-4\sqrt{2314}}{2} =-\frac{4\sqrt{2314}}{2} =-2\sqrt{2314} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2314}}{2*1}=\frac{0+4\sqrt{2314}}{2} =\frac{4\sqrt{2314}}{2} =2\sqrt{2314} $

See similar equations:

| 1/3(x+9)=2/3(2x-6) | | 56x+77=180 | | 2(y-2)=4y-4 | | -7y+4(y-4)=11 | | 1x+-7=2x+5 | | 3(4x-7)=2(x+2) | | 4-3b+5b=10 | | x+56+77=180 | | 100/4=x/5.6 | | 25-(t+18);t=7 | | -2(x-4)=3x+10+2 | | 4/100=5.6/x | | 7u-8+2(2u+5)=-7(u+1) | | 2/5(x-2)=-2 | | 93=8y+45 | | 7u-8+2(2u+5=-7(u+1) | | 8×x=-85 | | 28/8=8/x | | 5x+24=x+82 | | F(x)=5x-7/6x-9 | | 4.12/x=10.3/15.8 | | 25^(x+1)=5^x+7 | | 3/5k=225. | | 6x+8=56+2x | | 7×x=-84 | | 3/8t-15/2=18 | | 4x-2+6-6x=10 | | 9w+18=63 | | 2x+9=3x+2= | | 2(3x-1)=2(7-5x) | | 4x–2=6x+8 | | (6x+20)+(9x-5)=180 |

Equations solver categories