If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=9484
We move all terms to the left:
x2-(9484)=0
We add all the numbers together, and all the variables
x^2-9484=0
a = 1; b = 0; c = -9484;
Δ = b2-4ac
Δ = 02-4·1·(-9484)
Δ = 37936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{37936}=\sqrt{16*2371}=\sqrt{16}*\sqrt{2371}=4\sqrt{2371}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2371}}{2*1}=\frac{0-4\sqrt{2371}}{2} =-\frac{4\sqrt{2371}}{2} =-2\sqrt{2371} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2371}}{2*1}=\frac{0+4\sqrt{2371}}{2} =\frac{4\sqrt{2371}}{2} =2\sqrt{2371} $
| m-(-14)=35 | | 116=4(-3k+1)-4k | | 10p+10p=80 | | 20+n÷45=1 | | 5b=4b+13 | | -3=-2g+-7 | | 3=(1+11x | | 8v+10=2v+10 | | -h+8=h+10 | | -242=n+7(-2+8n) | | X2-8x=128 | | 5(x–3)=20 | | 8x^+10x-7=0 | | -18a+20a+4=0 | | 17=14+u/3 | | 4(m+1)-2=10 | | 2(x-50)=26 | | 8(n-3)+7n=-129 | | -3=-4x^2+x | | d-7=22 | | -5(c–1)=-35 | | -3(g+7)=-18 | | -2/3(4n+9)=14 | | -7d=2d | | f=7-2f | | -3(s-17)=9 | | -40=4(-2x+2) | | -8(7r-3)=360 | | 3y-4=3y-1 | | 18x-5=3+13x | | 23x-14=15x+7 | | -(p+11)=2 |