If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=(1/7)(7x+14)
We move all terms to the left:
x-((1/7)(7x+14))=0
Domain of the equation: 7)(7x+14))!=0We add all the numbers together, and all the variables
x∈R
x-((+1/7)(7x+14))=0
We multiply parentheses ..
-((+7x^2+1/7*14))+x=0
We multiply all the terms by the denominator
-((+7x^2+1+x*7*14))=0
We calculate terms in parentheses: -((+7x^2+1+x*7*14)), so:We get rid of parentheses
(+7x^2+1+x*7*14)
We get rid of parentheses
7x^2+x*7*14+1
Wy multiply elements
7x^2+98x*1+1
Wy multiply elements
7x^2+98x+1
Back to the equation:
-(7x^2+98x+1)
-7x^2-98x-1=0
a = -7; b = -98; c = -1;
Δ = b2-4ac
Δ = -982-4·(-7)·(-1)
Δ = 9576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9576}=\sqrt{36*266}=\sqrt{36}*\sqrt{266}=6\sqrt{266}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-98)-6\sqrt{266}}{2*-7}=\frac{98-6\sqrt{266}}{-14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-98)+6\sqrt{266}}{2*-7}=\frac{98+6\sqrt{266}}{-14} $
| -8=3x-8-3x | | 5(w-2)=5 | | 4n-7=6n+9 | | (3t)^2-5(3t)=14 | | x=5+5/6 | | 4.4q-2.1-5.6q=-0.2q-2.1 | | 8=7x/3 | | 4x+2/3=24 | | (4y+8)-(6+3y)=8 | | 2x+3x-8=x | | 2x-6x+9=7 | | 10/5=12/j | | |-10+m|=16 | | 6(2x-7)+4=9x-33 | | 7t-8=4 | | -8(6x-3)+2=-48x+26 | | 4x+9=47-3x | | 22=t*4 | | 64=e*9 | | 3m+4=m+10 | | 2p+1.5+15=11.50 | | 15.3=c2.1 | | 9x-6+7x=4(5x-3)+4 | | 3x+8=54+2x | | 11x+5=49 | | 34=t*14 | | 3b-2=5b | | 5y÷12=2y-3 | | y=5(-2)=3 | | 0.01x^2-10x+200=0 | | 1-5(2n-2)=-29-2n | | z*9=8 |