x=(10-x)(6-x)

Simple and best practice solution for x=(10-x)(6-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(10-x)(6-x) equation:



x=(10-x)(6-x)
We move all terms to the left:
x-((10-x)(6-x))=0
We add all the numbers together, and all the variables
x-((-1x+10)(-1x+6))=0
We multiply parentheses ..
-((+x^2-6x-10x+60))+x=0
We calculate terms in parentheses: -((+x^2-6x-10x+60)), so:
(+x^2-6x-10x+60)
We get rid of parentheses
x^2-6x-10x+60
We add all the numbers together, and all the variables
x^2-16x+60
Back to the equation:
-(x^2-16x+60)
We add all the numbers together, and all the variables
x-(x^2-16x+60)=0
We get rid of parentheses
-x^2+x+16x-60=0
We add all the numbers together, and all the variables
-1x^2+17x-60=0
a = -1; b = 17; c = -60;
Δ = b2-4ac
Δ = 172-4·(-1)·(-60)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-7}{2*-1}=\frac{-24}{-2} =+12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+7}{2*-1}=\frac{-10}{-2} =+5 $

See similar equations:

| f-1-7=0 | | ?x25=100 | | -7(x+1)=3(x-1) | | 5x–10=2x+11 | | 57=(30)(r) | | 3x+½x=14 | | x/24=7/8 | | 2x+(x-5)=49 | | 6x=x10 | | 19=v−76 | | 5x+2=23, | | 4x^+16x-5=0 | | –3y+3y=0 | | 1/2x^2-4=4 | | 1x/1=30/1 | | 8(x+2)/4=18 | | 5.5x-4=155 | | 1/2x^2-5=-5 | | 19=v-76 | | 3x+12=x-28 | | -2(3-4)=-2x+2 | | 4+x+3=2(x-6) | | 9x+80=7x+40 | | 16x36=16x | | r+12=61 | | -23=-w/6 | | 5x=3^(2x-5) | | 6x-6+6x=-3 | | x-7=-2x-1 | | 2/3x-8=1/3x+7 | | 4y-y^2=10 | | -36=u/6 |

Equations solver categories