x=(2x-5)(2x-1)

Simple and best practice solution for x=(2x-5)(2x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(2x-5)(2x-1) equation:



x=(2x-5)(2x-1)
We move all terms to the left:
x-((2x-5)(2x-1))=0
We multiply parentheses ..
-((+4x^2-2x-10x+5))+x=0
We calculate terms in parentheses: -((+4x^2-2x-10x+5)), so:
(+4x^2-2x-10x+5)
We get rid of parentheses
4x^2-2x-10x+5
We add all the numbers together, and all the variables
4x^2-12x+5
Back to the equation:
-(4x^2-12x+5)
We add all the numbers together, and all the variables
x-(4x^2-12x+5)=0
We get rid of parentheses
-4x^2+x+12x-5=0
We add all the numbers together, and all the variables
-4x^2+13x-5=0
a = -4; b = 13; c = -5;
Δ = b2-4ac
Δ = 132-4·(-4)·(-5)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{89}}{2*-4}=\frac{-13-\sqrt{89}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{89}}{2*-4}=\frac{-13+\sqrt{89}}{-8} $

See similar equations:

| 7n+39=-5n+3(8n-7) | | 5r-15=8+48 | | 2+4x-6=16 | | -4+5p=10p+7-6 | | 68=3(6r-1)+7(-1+3r) | | (4x-5)^0=(x+90) | | 1.9p–5p+30–10=40p= | | 5x-1=29x= | | 3x+41=3x+41 | | -2(4+3y)=-294+y) | | 6+z-5=-5+2z | | 2(3x-1)=6x-2 | | 7n+39=-5n+3(8n-21) | | 17/2=5/x | | 2x-(5x+4)=8 | | 19=4w-17 | | 6k−10=7k | | Y²-41y+400=0 | | 42=6−3(8x−8)+24x | | 4+7u=5u | | -42=6−3(8x−8)+24x | | 5(x+5)=3(x–7) | | 2x+3+11x+9=180 | | 4-3k-8k=6-10k | | x/3=2x= | | 25/5=x/7 | | 5m=6.5m-1 | | −8=2(4r+8) | | z-2=-9 | | 7x+10-25=20 | | (19-x)+(12-x)+x=25 | | 54=2x÷2 |

Equations solver categories