x=(2x-5)(x+7)

Simple and best practice solution for x=(2x-5)(x+7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(2x-5)(x+7) equation:



x=(2x-5)(x+7)
We move all terms to the left:
x-((2x-5)(x+7))=0
We multiply parentheses ..
-((+2x^2+14x-5x-35))+x=0
We calculate terms in parentheses: -((+2x^2+14x-5x-35)), so:
(+2x^2+14x-5x-35)
We get rid of parentheses
2x^2+14x-5x-35
We add all the numbers together, and all the variables
2x^2+9x-35
Back to the equation:
-(2x^2+9x-35)
We add all the numbers together, and all the variables
x-(2x^2+9x-35)=0
We get rid of parentheses
-2x^2+x-9x+35=0
We add all the numbers together, and all the variables
-2x^2-8x+35=0
a = -2; b = -8; c = +35;
Δ = b2-4ac
Δ = -82-4·(-2)·35
Δ = 344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{344}=\sqrt{4*86}=\sqrt{4}*\sqrt{86}=2\sqrt{86}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{86}}{2*-2}=\frac{8-2\sqrt{86}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{86}}{2*-2}=\frac{8+2\sqrt{86}}{-4} $

See similar equations:

| 27x=10x+7x | | 5+4.5x=18 | | 6x+12=2(2x-10) | | 27x+27=180 | | 15-2a=4a-9 | | |3a|=27 | | 14=-y-5 | | 3(d-4=2d+10 | | 4x=15-21 | | (10x+7)(2x+7)=0 | | 15a=9a+24 | | x/8=9.6 | | 9x9x=19x-4 | | 8m+34=3m-26 | | x-18=3(x-6) | | 6+x=8+x+8 | | 7+2=8n-5 | | 4(y÷7)=16 | | a/17=20 | | 11x+1=19x31 | | 30=12+k | | n=-4n-1 | | 8=5.2+v | | (x)/(11^(5))=11^(8) | | (X^3)-(5x^2)-1000=0 | | 49=4.9s | | 35+102+118+x=360 | | -54=6h | | 33+116+104+x=360 | | 23=-7x+2 | | 14x–6=x | | -3=x^2+3x+8 |

Equations solver categories