x=(3x+10)(5x-26)

Simple and best practice solution for x=(3x+10)(5x-26) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(3x+10)(5x-26) equation:



x=(3x+10)(5x-26)
We move all terms to the left:
x-((3x+10)(5x-26))=0
We multiply parentheses ..
-((+15x^2-78x+50x-260))+x=0
We calculate terms in parentheses: -((+15x^2-78x+50x-260)), so:
(+15x^2-78x+50x-260)
We get rid of parentheses
15x^2-78x+50x-260
We add all the numbers together, and all the variables
15x^2-28x-260
Back to the equation:
-(15x^2-28x-260)
We add all the numbers together, and all the variables
x-(15x^2-28x-260)=0
We get rid of parentheses
-15x^2+x+28x+260=0
We add all the numbers together, and all the variables
-15x^2+29x+260=0
a = -15; b = 29; c = +260;
Δ = b2-4ac
Δ = 292-4·(-15)·260
Δ = 16441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-\sqrt{16441}}{2*-15}=\frac{-29-\sqrt{16441}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+\sqrt{16441}}{2*-15}=\frac{-29+\sqrt{16441}}{-30} $

See similar equations:

| -20=4(3x+7)-3x+24 | | (15x-32)=180 | | 9–3x=33 | | 2-7x=9-8x | | r+104=3 | | |x+1|-7.8=6.2 | | p+39=128 | | 3x-7=-6x+110 | | p+57=79 | | p+60=90 | | −4−3n=−13 | | 3+2x6-4x8=35 | | 180=x+62.8+(2x-44.8) | | 10/x=6/3x+5 | | -30y+y+y=180 | | -2(1+7k)=-114 | | -4k=6-6k | | 3y^2-10=y+6 | | (a-4)/5=22 | | 8m2+16m+32=40 | | y9=41 | | 2x(x+17)=81 | | y(y+4)=-8 | | -7x-(-5-x=-9(2x-1)-1 | | 250+3.50x=300+2.25x | | −x3+21=0-x3+21=0 | | 156=3x+36 | | 250+3.50x=300+225x | | 4x=+5 | | 7x–5=23 | | R(x)=42,000x-6x^2 | | 6(3n+1)-3(-1+2n)=n=2n |

Equations solver categories