If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=(3x-2)(2x-5)-(3x-2)(x+1)
We move all terms to the left:
x-((3x-2)(2x-5)-(3x-2)(x+1))=0
We multiply parentheses ..
-((+6x^2-15x-4x+10)-(3x-2)(x+1))+x=0
We calculate terms in parentheses: -((+6x^2-15x-4x+10)-(3x-2)(x+1)), so:We add all the numbers together, and all the variables
(+6x^2-15x-4x+10)-(3x-2)(x+1)
We get rid of parentheses
6x^2-15x-4x-(3x-2)(x+1)+10
We multiply parentheses ..
6x^2-(+3x^2+3x-2x-2)-15x-4x+10
We add all the numbers together, and all the variables
6x^2-(+3x^2+3x-2x-2)-19x+10
We get rid of parentheses
6x^2-3x^2-3x+2x-19x+2+10
We add all the numbers together, and all the variables
3x^2-20x+12
Back to the equation:
-(3x^2-20x+12)
x-(3x^2-20x+12)=0
We get rid of parentheses
-3x^2+x+20x-12=0
We add all the numbers together, and all the variables
-3x^2+21x-12=0
a = -3; b = 21; c = -12;
Δ = b2-4ac
Δ = 212-4·(-3)·(-12)
Δ = 297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{297}=\sqrt{9*33}=\sqrt{9}*\sqrt{33}=3\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3\sqrt{33}}{2*-3}=\frac{-21-3\sqrt{33}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3\sqrt{33}}{2*-3}=\frac{-21+3\sqrt{33}}{-6} $
| A(x)=(3x-2)(2x-5)-(3x-2)(x+1) | | 4x+6x=1000x | | –60=–10(r–2) | | –6y−14=22 | | –1=5+z6 | | –25=10a–5a | | -29=2(q-3)-11 | | 10x+50-4x×x=0 | | 3x-13=7x-14 | | 10x+50-4x=0 | | -10a+9a=-4 | | X2-52x+672=0 | | 9b-(7b-11)=+b | | 5–(2–4x)=–21 | | (5x+10)/(8x-20)=x | | 2.5x+7=2x+13 | | 2y÷7=27 | | X+1y=56 | | 5x–40^2=0 | | 2.65xX=12 | | 0=14+(9.8)*t | | 7-q/6=q | | 7-9x-11=-8x+5 | | 3x-14=9-2x. | | X³+14x-43=0 | | y=0.75+3 | | 8-7x=2x+17 | | 0=4x2+6x-9 | | 5r2^2-10r=0 | | 3(3x-2x)=2x-11 | | w^2-12.5w+84=0 | | 1=-6(1-p) |