x=(400+20x)(90-1x)

Simple and best practice solution for x=(400+20x)(90-1x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(400+20x)(90-1x) equation:



x=(400+20x)(90-1x)
We move all terms to the left:
x-((400+20x)(90-1x))=0
We add all the numbers together, and all the variables
x-((20x+400)(-1x+90))=0
We multiply parentheses ..
-((-20x^2+1800x-400x+36000))+x=0
We calculate terms in parentheses: -((-20x^2+1800x-400x+36000)), so:
(-20x^2+1800x-400x+36000)
We get rid of parentheses
-20x^2+1800x-400x+36000
We add all the numbers together, and all the variables
-20x^2+1400x+36000
Back to the equation:
-(-20x^2+1400x+36000)
We get rid of parentheses
20x^2-1400x+x-36000=0
We add all the numbers together, and all the variables
20x^2-1399x-36000=0
a = 20; b = -1399; c = -36000;
Δ = b2-4ac
Δ = -13992-4·20·(-36000)
Δ = 4837201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1399)-\sqrt{4837201}}{2*20}=\frac{1399-\sqrt{4837201}}{40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1399)+\sqrt{4837201}}{2*20}=\frac{1399+\sqrt{4837201}}{40} $

See similar equations:

| 2*n+5=-3 | | 2×n+5=-3 | | 94+m=100 | | 3x+2x-15=90° | | -(2n+9)=-1•(2n+9) | | 7(5+0.05x)=98 | | 54-10y=-6 | | 6x+50=500-30x | | 4=-8+x/6 | | 3/4+1/2x=-9x+16 | | 75t=15 | | 15x+23Y=4 | | t75=15 | | a+99=120 | | 3b-6=188 | | q/0.45=40 | | 4^x-5=16^{2x}-31 | | 20=-5+3x | | 31+2b=61 | | x*1.1=13000 | | 8(n-86)=80 | | X^2+(x+7)^2=(x+9)^2 | | -24(3x+5)=8(x+35) | | 6=6(z-83) | | 4=2+x/6 | | 19+5k=54 | | (2x-1÷3=5 | | 7x+14=6x+11 | | 7(u-88)=42 | | ½(6n–12)=3 | | 2/3b+5=20+-1b | | 15x-4-13x=8 |

Equations solver categories