x=(400+20x)(90-x)

Simple and best practice solution for x=(400+20x)(90-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(400+20x)(90-x) equation:



x=(400+20x)(90-x)
We move all terms to the left:
x-((400+20x)(90-x))=0
We add all the numbers together, and all the variables
x-((20x+400)(-1x+90))=0
We multiply parentheses ..
-((-20x^2+1800x-400x+36000))+x=0
We calculate terms in parentheses: -((-20x^2+1800x-400x+36000)), so:
(-20x^2+1800x-400x+36000)
We get rid of parentheses
-20x^2+1800x-400x+36000
We add all the numbers together, and all the variables
-20x^2+1400x+36000
Back to the equation:
-(-20x^2+1400x+36000)
We get rid of parentheses
20x^2-1400x+x-36000=0
We add all the numbers together, and all the variables
20x^2-1399x-36000=0
a = 20; b = -1399; c = -36000;
Δ = b2-4ac
Δ = -13992-4·20·(-36000)
Δ = 4837201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1399)-\sqrt{4837201}}{2*20}=\frac{1399-\sqrt{4837201}}{40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1399)+\sqrt{4837201}}{2*20}=\frac{1399+\sqrt{4837201}}{40} $

See similar equations:

| -2(h+2)=0 | | -6(x+1)-12=33+3 | | 7(6x-4)=31 | | -2(-5-3c)=7c | | 6(5x-8)=27 | | 22k=7(3k-5) | | 125t=85t+ | | -4x+3x+4=12 | | 15-2w+5=11 | | 7/12x-3/4=2/9-2/3x | | X+8/x-8=68.28 | | 40=40x(20+x) | | 49=-7/8x | | x=34/12 | | 1+4(x-2)=-5-5(x-5) | | 2/3x-(-1/2)=1/3+5/6x | | -4x+3x=42 | | -1/6x=-18 | | 3u^2=-24u | | 3b+10=5b+6 | | (7m/21)=(3m/21)+7 | | 8x-24=60+6x | | m/3=m/7+7 | | 5(x+3)^2=90 | | 6x×(-3)=198 | | (y-1)^2=6 | | k+77=-2k(16-89) | | 15/8n=6 | | -x^2=3x+2 | | K+13=x+21 | | 9(×-2)=4(x+3) | | 3-7p=-12 |

Equations solver categories