x=(4x+3)(2x-5)

Simple and best practice solution for x=(4x+3)(2x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(4x+3)(2x-5) equation:



x=(4x+3)(2x-5)
We move all terms to the left:
x-((4x+3)(2x-5))=0
We multiply parentheses ..
-((+8x^2-20x+6x-15))+x=0
We calculate terms in parentheses: -((+8x^2-20x+6x-15)), so:
(+8x^2-20x+6x-15)
We get rid of parentheses
8x^2-20x+6x-15
We add all the numbers together, and all the variables
8x^2-14x-15
Back to the equation:
-(8x^2-14x-15)
We add all the numbers together, and all the variables
x-(8x^2-14x-15)=0
We get rid of parentheses
-8x^2+x+14x+15=0
We add all the numbers together, and all the variables
-8x^2+15x+15=0
a = -8; b = 15; c = +15;
Δ = b2-4ac
Δ = 152-4·(-8)·15
Δ = 705
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{705}}{2*-8}=\frac{-15-\sqrt{705}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{705}}{2*-8}=\frac{-15+\sqrt{705}}{-16} $

See similar equations:

| –12=2x/–9 | | -12+100=-12x+100 | | 6x+4x5/6-1,5x=4 | | y=-3+-12 | | 5*2^(x)=2*5^(x) | | -22/3m=6 | | x+1÷3-x-2÷5=2 | | -2.666666666666666667m=6 | | 5*2^x=2*5^x | | 5x+2=52# | | -9=5(w-6)-8w | | −3(x−5)=27+3x | | 0,3y+0,5=0,8y-3,5 | | 5y/2=9+y | | 5x-4=5=2x | | 4a+2=7+a | | 13-8x=-107 | | A=6(8x+2)-(3x-4)(3x+4)+(3x-6) | | 10x-4-3x=10 | | 5x+2.4=7 | | 5(5c-5)=100 | | 8x+16+2x-18+x-18=180 | | 2(2a+2)=16 | | X²+8x-48=0 | | 5x-5=2(2x-5 | | 7x+19=12x−6 | | 3y+55=205 | | E(x)=2(x+3)^2-(2+x)(x-2=-2(5x+7) | | 48=6m-18 | | m/3+2.5=3.7 | | 6x+4=1+x | | 3z/10+1=6 |

Equations solver categories