If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=(5/9)(2x-32)
We move all terms to the left:
x-((5/9)(2x-32))=0
Domain of the equation: 9)(2x-32))!=0We add all the numbers together, and all the variables
x∈R
x-((+5/9)(2x-32))=0
We multiply parentheses ..
-((+10x^2+5/9*-32))+x=0
We multiply all the terms by the denominator
-((+10x^2+5+x*9*-32))=0
We calculate terms in parentheses: -((+10x^2+5+x*9*-32)), so:We get rid of parentheses
(+10x^2+5+x*9*-32)
We get rid of parentheses
10x^2+x*9*+5-32
We add all the numbers together, and all the variables
10x^2+x*9*-27
Wy multiply elements
10x^2+9x^2-27
We add all the numbers together, and all the variables
19x^2-27
Back to the equation:
-(19x^2-27)
-19x^2+27=0
a = -19; b = 0; c = +27;
Δ = b2-4ac
Δ = 02-4·(-19)·27
Δ = 2052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2052}=\sqrt{36*57}=\sqrt{36}*\sqrt{57}=6\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{57}}{2*-19}=\frac{0-6\sqrt{57}}{-38} =-\frac{6\sqrt{57}}{-38} =-\frac{3\sqrt{57}}{-19} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{57}}{2*-19}=\frac{0+6\sqrt{57}}{-38} =\frac{6\sqrt{57}}{-38} =\frac{3\sqrt{57}}{-19} $
| (x-964)x2=720 | | 8x+25=4x+105 | | 2/2-x=4x-2 | | 12=7+2x | | 8+-3b=19 | | 3X+2-5x=35-2× | | X+2/5x=35 | | 2/6=x/3,5 | | P=4(7p+8) | | (3x)-14=49 | | 5a-7=32 | | (3x)-14=7 | | 20x^2+16x-69=0 | | (2x)-4=21 | | (2x)-4=84 | | (2x)4=168 | | x^2-4x+A=0 | | x3-21×+20=0 | | X2+-4x+5=0 | | d–412=128 | | 39a=245 | | 5x^2+40x-9=0 | | x-6=13x= | | x^2+3x-10=2x | | 4/5(x-1)=2-3/5x | | 8x+2x=15+-10 | | 3x/5+8+9=13 | | 5v-2-4v=7 | | 4/5h=20 | | 3(2w+1)=6(w-2)+14 | | 6-(2p+5)=8-p | | 8^x=16(2^1-x) |