If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=(5x+15)(3x-3)
We move all terms to the left:
x-((5x+15)(3x-3))=0
We multiply parentheses ..
-((+15x^2-15x+45x-45))+x=0
We calculate terms in parentheses: -((+15x^2-15x+45x-45)), so:We add all the numbers together, and all the variables
(+15x^2-15x+45x-45)
We get rid of parentheses
15x^2-15x+45x-45
We add all the numbers together, and all the variables
15x^2+30x-45
Back to the equation:
-(15x^2+30x-45)
x-(15x^2+30x-45)=0
We get rid of parentheses
-15x^2+x-30x+45=0
We add all the numbers together, and all the variables
-15x^2-29x+45=0
a = -15; b = -29; c = +45;
Δ = b2-4ac
Δ = -292-4·(-15)·45
Δ = 3541
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-\sqrt{3541}}{2*-15}=\frac{29-\sqrt{3541}}{-30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+\sqrt{3541}}{2*-15}=\frac{29+\sqrt{3541}}{-30} $
| 3/4x+5=7/12 | | 12^(5x+4)=1 | | -3(x-5)=105 | | z+4/9=2z | | t=94-40/4 | | 11(9x-3)+11=8x+160 | | 1/4(4/3x=16)=2(x+3) | | 2+2r=18 | | 1/4(4/3x=16)=2(x=3) | | 10(7x+4)+3=-657 | | 4(-5-x)=5x+1/4 | | 3x+5x+30=-4 | | 5x/5(6)x5(11)=5(2) | | 11v-7v=-12+3v | | (x-6^2)+320=0 | | 10=6+3p+1 | | 7x+19=-2x-+55 | | 7x+3=5x-19 | | 40/x+7=8/7 | | p/3– 2= 2 | | 7x+19=-2x-55 | | 12x+6=6(2x+) | | 23+3b=b+3 | | 1⁄4·n=12 | | 2(5x-12)=1-5(x-1) | | M6=2x+5 | | 5+2x=2x+6. | | 3(4x-1)+2=x+21 | | r/3+9=12 | | r3+ 9= 12 | | 28x+15=15x+41 | | 9x-6=-105 |