x=(5x-72)*(5x-72)

Simple and best practice solution for x=(5x-72)*(5x-72) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(5x-72)*(5x-72) equation:



x=(5x-72)(5x-72)
We move all terms to the left:
x-((5x-72)(5x-72))=0
We multiply parentheses ..
-((+25x^2-360x-360x+5184))+x=0
We calculate terms in parentheses: -((+25x^2-360x-360x+5184)), so:
(+25x^2-360x-360x+5184)
We get rid of parentheses
25x^2-360x-360x+5184
We add all the numbers together, and all the variables
25x^2-720x+5184
Back to the equation:
-(25x^2-720x+5184)
We add all the numbers together, and all the variables
x-(25x^2-720x+5184)=0
We get rid of parentheses
-25x^2+x+720x-5184=0
We add all the numbers together, and all the variables
-25x^2+721x-5184=0
a = -25; b = 721; c = -5184;
Δ = b2-4ac
Δ = 7212-4·(-25)·(-5184)
Δ = 1441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(721)-\sqrt{1441}}{2*-25}=\frac{-721-\sqrt{1441}}{-50} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(721)+\sqrt{1441}}{2*-25}=\frac{-721+\sqrt{1441}}{-50} $

See similar equations:

| 8^3-2x=0 | | 3n-3(-3n+9)+1=58 | | n+8/8=-1 | | 8x+12-3x=34 | | 8(-3n=7)=8 | | 211=288-y | | 180-(61+5x-15)=x | | 12+9.50c=50 | | x/8+3=-42 | | x/10+2=0.7 | | x/9+1.5=7.8 | | x/7+1=18 | | 5c/8=5 | | -4(3x+1)-3(2x-3)=0 | | 3b+18=30 | | 9s-5=31 | | 2.5(x-2)=1.5x=1 | | 4c-9=19 | | 8d-8=16 | | 157+x-16=180 | | 9d-3=33 | | 2.3=y-4 | | 10c=16.89 | | X^2-2=5x-8 | | b-5.34=7.2 | | (9x-2)(x+9)=0 | | a+5.34=7.2 | | 4-7x2+3=2 | | 1.5g=16.5 | | 0.03*0.03*0.03*0.03*0.03=x | | 25x+15=7x-3 | | 4(8x+4)=4(2x+3)+8 |

Equations solver categories