x=(x+4)(X-1)

Simple and best practice solution for x=(x+4)(X-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(x+4)(X-1) equation:



x=(x+4)(x-1)
We move all terms to the left:
x-((x+4)(x-1))=0
We multiply parentheses ..
-((+x^2-1x+4x-4))+x=0
We calculate terms in parentheses: -((+x^2-1x+4x-4)), so:
(+x^2-1x+4x-4)
We get rid of parentheses
x^2-1x+4x-4
We add all the numbers together, and all the variables
x^2+3x-4
Back to the equation:
-(x^2+3x-4)
We add all the numbers together, and all the variables
x-(x^2+3x-4)=0
We get rid of parentheses
-x^2+x-3x+4=0
We add all the numbers together, and all the variables
-1x^2-2x+4=0
a = -1; b = -2; c = +4;
Δ = b2-4ac
Δ = -22-4·(-1)·4
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{5}}{2*-1}=\frac{2-2\sqrt{5}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{5}}{2*-1}=\frac{2+2\sqrt{5}}{-2} $

See similar equations:

| 67-2z=-17 | | 4.8x-1=3.8x+3 | | 9(c+3)=99 | | y+56/2=7 | | -10w+-5=25 | | -x-3=3/2x+2 | | x+250=x+25 | | 8=j/2-2 | | y-2/3=10 | | 16x+21=15x+19 | | x/2+2/2=x/5+1/5 | | x=x²-3x-4 | | 1x=x²-3x-4 | | 3x+5=2x+-1 | | X^2-8x+6=-6x+9 | | 3=u/2-8 | | 10=z+34/6 | | -1x=2x-4 | | 5(u+8)=70 | | x/100=155/325 | | 3v+12=36 | | u/2+15=23 | | z-91/2=4 | | 81=3(-5k+7) | | 5=g+5/5 | | 21+2u=73 | | 3(2x-5)-9=4x+6 | | 5+5u=50 | | 6n+12n+36=5n-12 | | 4(v+9)=9v-4 | | 117-x=90 | | 2w-26=4(w-9) |

Equations solver categories