x=-(5+3,3)/2000

Simple and best practice solution for x=-(5+3,3)/2000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=-(5+3,3)/2000 equation:



x=-(5+3.3)/2000
We move all terms to the left:
x-(-(5+3.3)/2000)=0
We add all the numbers together, and all the variables
x-(-(8.3)/2000)=0
We multiply all the terms by the denominator
x*2000)-(-(8.3)=0
We add all the numbers together, and all the variables
x*2000)-(-8.3=0
Wy multiply elements
2000x^2-8.3=0
a = 2000; b = 0; c = -8.3;
Δ = b2-4ac
Δ = 02-4·2000·(-8.3)
Δ = 66400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{66400}=\sqrt{400*166}=\sqrt{400}*\sqrt{166}=20\sqrt{166}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{166}}{2*2000}=\frac{0-20\sqrt{166}}{4000} =-\frac{20\sqrt{166}}{4000} =-\frac{\sqrt{166}}{200} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{166}}{2*2000}=\frac{0+20\sqrt{166}}{4000} =\frac{20\sqrt{166}}{4000} =\frac{\sqrt{166}}{200} $

See similar equations:

| 4x+8(39-x)=135 | | 3n^2*2n=1 | | 2/x=x/9 | | 3(2z-4)=5(2+4) | | 3x-10=246 | | 7x=328 | | 7x=329 | | 6^(x-5)=5 | | 6x+10=68 | | 2xx6=11x-8/3 | | Y=125x+500 | | 5m+18=15m-24- | | (x^2-x-20)(3x+21)=0 | | 6.2=2.2+xx= | | 4y+3=#y-4 | | V=13x42x75 | | 3w+6=0 | | 3/8h+4=1/2(h+4) | | w/2+15=17 | | 1/3=-4/5x-1/2 | | 1-3(x+5)=5x-6 | | -2p=-2p+2 | | -4v-1=6-4v | | 3(x-1.8=2x+10 | | -9(z-6)=4(z+4) | | -6n+10=-4n-8 | | -9j=-9j+4 | | 63=-9/5x | | y=350 | | 3u=3u-4 | | -10x+2=-3 | | 8x-6=3x-8 |

Equations solver categories