x=1680/x

Simple and best practice solution for x=1680/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=1680/x equation:



x=1680/x
We move all terms to the left:
x-(1680/x)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x-(+1680/x)=0
We get rid of parentheses
x-1680/x=0
We multiply all the terms by the denominator
x*x-1680=0
Wy multiply elements
x^2-1680=0
a = 1; b = 0; c = -1680;
Δ = b2-4ac
Δ = 02-4·1·(-1680)
Δ = 6720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6720}=\sqrt{64*105}=\sqrt{64}*\sqrt{105}=8\sqrt{105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{105}}{2*1}=\frac{0-8\sqrt{105}}{2} =-\frac{8\sqrt{105}}{2} =-4\sqrt{105} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{105}}{2*1}=\frac{0+8\sqrt{105}}{2} =\frac{8\sqrt{105}}{2} =4\sqrt{105} $

See similar equations:

| 3(x-2)+5=2(3x-5 | | 48-5g=38 | | -4x=2x+1 | | 28=9h+1 | | 7/6x=77 | | 6h+4=15-3h+16 | | x+17=4x+3 | | 4g-3=29 | | 9-4x=(2x+1) | | -29+8x=-8(-2x)+3 | | 5x/9-2=18 | | 0=a^2-a+42 | | 30=-5(6x=6) | | -7m+4(m-6)=-15 | | -2(3m+6)=-3(4+2m | | (x^2+3)^2-14(x^2+3)+24=0 | | 14=5h+6-3h | | x+2x+80=480 | | x+2/2-x-1/3=x/4 | | a+3=4a+6 | | 9e=72 | | F(x)=-1.5+4 | | 8x-1=39+3x | | 2(6x-11)+x=6-1x | | 5x+2=17+2x | | c+9=12 | | 4k-5=-2k+8 | | -2x-16=20+10x | | x2-1.5x-52=0 | | 4.8+n=62 | | 2x/2=7.5 | | 10.35-4.4q=-6.7q |

Equations solver categories