x=9(10x+10)(4x+20)

Simple and best practice solution for x=9(10x+10)(4x+20) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=9(10x+10)(4x+20) equation:



x=9(10x+10)(4x+20)
We move all terms to the left:
x-(9(10x+10)(4x+20))=0
We multiply parentheses ..
-(9(+40x^2+200x+40x+200))+x=0
We calculate terms in parentheses: -(9(+40x^2+200x+40x+200)), so:
9(+40x^2+200x+40x+200)
We multiply parentheses
360x^2+1800x+360x+1800
We add all the numbers together, and all the variables
360x^2+2160x+1800
Back to the equation:
-(360x^2+2160x+1800)
We add all the numbers together, and all the variables
x-(360x^2+2160x+1800)=0
We get rid of parentheses
-360x^2+x-2160x-1800=0
We add all the numbers together, and all the variables
-360x^2-2159x-1800=0
a = -360; b = -2159; c = -1800;
Δ = b2-4ac
Δ = -21592-4·(-360)·(-1800)
Δ = 2069281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2159)-\sqrt{2069281}}{2*-360}=\frac{2159-\sqrt{2069281}}{-720} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2159)+\sqrt{2069281}}{2*-360}=\frac{2159+\sqrt{2069281}}{-720} $

See similar equations:

| 20(−10+2x)=400 | | -7(8-2k)=-126 | | -3/5(15x-5)+4x-9=24 | | 1/5+1/4x=7/5-1/10x | | 17p+3p=-12p | | 22.75+28.00-28.00=17.25x+50.00-28.00 | | 12x+5x=-9x | | 10(x-6)=-133 | | -2x-x=5 | | -6n-9=-2n+53= | | (5x+7)/6=0 | | 4x+26=58 | | x/3x+4=16 | | 24x=91 | | 266=19b | | 56=6n | | 22.75x+28.00=0 | | 1.87=x-11.04 | | .5(2w-4)=-17 | | 9(d+3)=23=4d | | 6k+42=96 | | 18k=360 | | 5(x=2)-3(7-x) | | 54-7x=5 | | 12b+4=32+5b | | 13a=234 | | 6t=3(16) | | 16p=272 | | 18x-9x=+x | | 3c-7=2c-1 | | 9r=135 | | 6c+14=−5c |

Equations solver categories