If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=9/32x
We move all terms to the left:
x-(9/32x)=0
Domain of the equation: 32x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
x-(+9/32x)=0
We get rid of parentheses
x-9/32x=0
We multiply all the terms by the denominator
x*32x-9=0
Wy multiply elements
32x^2-9=0
a = 32; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·32·(-9)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{2}}{2*32}=\frac{0-24\sqrt{2}}{64} =-\frac{24\sqrt{2}}{64} =-\frac{3\sqrt{2}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{2}}{2*32}=\frac{0+24\sqrt{2}}{64} =\frac{24\sqrt{2}}{64} =\frac{3\sqrt{2}}{8} $
| 6x=88−5x | | -(x-10)=3.x+2 | | (d2+6d+9)+(d3+6d+9)=(d2+6d+9)+(d3+6d+9 | | s*4+17=101 | | 4(2l+2)=27 | | –3(2x–4)=2x+5–2(4x–5) | | 2x-7=14x= | | 0,3-0,7x=-0,2 | | 9(x+9)=126 | | 2x-+5=3x+6 | | 5(10-3b)=105-8b+411-4b) | | 1/3x+1=15 | | 3√y=3y | | 14x-8=5x+64 | | (2x+1)=(-5x+3) | | x-70+x+x/2=1280 | | a/3=+8=13 | | -6x=-132+6x | | 8x=2=30 | | 6=p+p+p | | y²-3y-18=0 | | 22x=220 | | 20+(x+15)=90 | | 4x-35=2x-13 | | 3^n=1/3/3 | | 8a-7=5 | | (e+3)×5=25 | | 2x-75=105-x | | 3(2p-1)+2(5p-10)=8= | | 4(3x−2)=2x−5 | | 2x=15+0.50x | | 6(x-2)+1=15 |