If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying y(y + 6)(12) + -1(y + 6)(y + -6) * 2 = y(16y + 6) Reorder the terms: y(6 + y)(12) + -1(y + 6)(y + -6) * 2 = y(16y + 6) Reorder the terms for easier multiplication: 12y(6 + y) + -1(y + 6)(y + -6) * 2 = y(16y + 6) (6 * 12y + y * 12y) + -1(y + 6)(y + -6) * 2 = y(16y + 6) (72y + 12y2) + -1(y + 6)(y + -6) * 2 = y(16y + 6) Reorder the terms: 72y + 12y2 + -1(6 + y)(y + -6) * 2 = y(16y + 6) Reorder the terms: 72y + 12y2 + -1(6 + y)(-6 + y) * 2 = y(16y + 6) Reorder the terms for easier multiplication: 72y + 12y2 + -1 * 2(6 + y)(-6 + y) = y(16y + 6) Multiply -1 * 2 72y + 12y2 + -2(6 + y)(-6 + y) = y(16y + 6) Multiply (6 + y) * (-6 + y) 72y + 12y2 + -2(6(-6 + y) + y(-6 + y)) = y(16y + 6) 72y + 12y2 + -2((-6 * 6 + y * 6) + y(-6 + y)) = y(16y + 6) 72y + 12y2 + -2((-36 + 6y) + y(-6 + y)) = y(16y + 6) 72y + 12y2 + -2(-36 + 6y + (-6 * y + y * y)) = y(16y + 6) 72y + 12y2 + -2(-36 + 6y + (-6y + y2)) = y(16y + 6) Combine like terms: 6y + -6y = 0 72y + 12y2 + -2(-36 + 0 + y2) = y(16y + 6) 72y + 12y2 + -2(-36 + y2) = y(16y + 6) 72y + 12y2 + (-36 * -2 + y2 * -2) = y(16y + 6) 72y + 12y2 + (72 + -2y2) = y(16y + 6) Reorder the terms: 72 + 72y + 12y2 + -2y2 = y(16y + 6) Combine like terms: 12y2 + -2y2 = 10y2 72 + 72y + 10y2 = y(16y + 6) Reorder the terms: 72 + 72y + 10y2 = y(6 + 16y) 72 + 72y + 10y2 = (6 * y + 16y * y) 72 + 72y + 10y2 = (6y + 16y2) Solving 72 + 72y + 10y2 = 6y + 16y2 Solving for variable 'y'. Reorder the terms: 72 + 72y + -6y + 10y2 + -16y2 = 6y + 16y2 + -6y + -16y2 Combine like terms: 72y + -6y = 66y 72 + 66y + 10y2 + -16y2 = 6y + 16y2 + -6y + -16y2 Combine like terms: 10y2 + -16y2 = -6y2 72 + 66y + -6y2 = 6y + 16y2 + -6y + -16y2 Reorder the terms: 72 + 66y + -6y2 = 6y + -6y + 16y2 + -16y2 Combine like terms: 6y + -6y = 0 72 + 66y + -6y2 = 0 + 16y2 + -16y2 72 + 66y + -6y2 = 16y2 + -16y2 Combine like terms: 16y2 + -16y2 = 0 72 + 66y + -6y2 = 0 Factor out the Greatest Common Factor (GCF), '6'. 6(12 + 11y + -1y2) = 0 Factor a trinomial. 6((12 + -1y)(1 + y)) = 0 Ignore the factor 6.Subproblem 1
Set the factor '(12 + -1y)' equal to zero and attempt to solve: Simplifying 12 + -1y = 0 Solving 12 + -1y = 0 Move all terms containing y to the left, all other terms to the right. Add '-12' to each side of the equation. 12 + -12 + -1y = 0 + -12 Combine like terms: 12 + -12 = 0 0 + -1y = 0 + -12 -1y = 0 + -12 Combine like terms: 0 + -12 = -12 -1y = -12 Divide each side by '-1'. y = 12 Simplifying y = 12Subproblem 2
Set the factor '(1 + y)' equal to zero and attempt to solve: Simplifying 1 + y = 0 Solving 1 + y = 0 Move all terms containing y to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + y = 0 + -1 Combine like terms: 1 + -1 = 0 0 + y = 0 + -1 y = 0 + -1 Combine like terms: 0 + -1 = -1 y = -1 Simplifying y = -1Solution
y = {12, -1}
| -1-9=9x+3-8x | | 3(80-9x)=8-96 | | -7x+8=7(-6x-1) | | N=9200ln(5t+3) | | X^2+2x-224=0 | | 141-2x=43x+21 | | 17y=16(y+5) | | 2x-2=4+x | | 7m-9= | | 1=C(x+3)+1 | | 6(2x-3)=2(3x-6) | | 89+65= | | 2x-8=14-9x | | 5x+35=12x-35 | | -(4x-(-2x-(3x+6)))=4-(-x+(2x-1)) | | -1.6x+5=-7.8 | | 4(2x+3)=60 | | (6xy^3+cos(y))dx+(2kx^2y^2-xsin(y))dy=0 | | 21=2x+13 | | 5t(t+1)=20 | | n+13=x | | 3x-3=x+4 | | -2(v-8)=4v+4 | | n+13= | | 44=2x-6 | | 4(2n-1)=3(4n+8) | | 5+3(n+2)=n-5 | | y=C(x+3)+1 | | 4(n+3)=60 | | b=mf | | x-7=10*5 | | (4a-5)(5a+4)= |