y(y-1)(y+1)=3360

Simple and best practice solution for y(y-1)(y+1)=3360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y(y-1)(y+1)=3360 equation:



y(y-1)(y+1)=3360
We move all terms to the left:
y(y-1)(y+1)-(3360)=0
We use the square of the difference formula
y^2-1-3360=0
We add all the numbers together, and all the variables
y^2-3361=0
a = 1; b = 0; c = -3361;
Δ = b2-4ac
Δ = 02-4·1·(-3361)
Δ = 13444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13444}=\sqrt{4*3361}=\sqrt{4}*\sqrt{3361}=2\sqrt{3361}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3361}}{2*1}=\frac{0-2\sqrt{3361}}{2} =-\frac{2\sqrt{3361}}{2} =-\sqrt{3361} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3361}}{2*1}=\frac{0+2\sqrt{3361}}{2} =\frac{2\sqrt{3361}}{2} =\sqrt{3361} $

See similar equations:

| 8-4x=138 | | 8.8(x-3.5)=26.4 | | -5+2q=2q-5 | | 5/2u=1/10-7/5u | | 9x-5x+170=9x+60 | | n/10+2/5=-2/5 | | 6x+7=x+1 | | -4-6h=5-9h | | y-4=2(-3+3) | | -8m-6m-9=-23 | | 9j+6=2j-8 | | 4x+2x−3x=3 | | 31-3x=6(7x+4)+7 | | 2n-10=5+n | | 5w-4=-4+5w | | 23x-5=21x+5,x | | -5x+13+3x=9-7x-6 | | 93276029x+0941872=192640298365029 | | -1+9z=9z-8 | | 9-8z=-8z+9 | | 7(2x+3)=9(x+4) | | 5t^2-2t-2=0 | | (-460)=-10(5x+16) | | 8x-5(2x-6)=-x+30 | | 20f+11=19f | | -16j-18=-18j | | 22.94x=31.26 | | -15r=-17r+14 | | 12t+4t−14t−t+2=13 | | 13.82+0.13x=14.57+0.15x | | -2x+8=-4(6x-2) | | 6.2g+7=3.2g+25 |

Equations solver categories