If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y(y-14)=62
We move all terms to the left:
y(y-14)-(62)=0
We multiply parentheses
y^2-14y-62=0
a = 1; b = -14; c = -62;
Δ = b2-4ac
Δ = -142-4·1·(-62)
Δ = 444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{444}=\sqrt{4*111}=\sqrt{4}*\sqrt{111}=2\sqrt{111}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{111}}{2*1}=\frac{14-2\sqrt{111}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{111}}{2*1}=\frac{14+2\sqrt{111}}{2} $
| 18y=-17 | | -4y-2+6y=-6 | | 3(x-1)+7=4x+2-3(2-x | | x*(x+1)=15 | | 8r-5r=-12 | | 5x(2x-10)=0 | | 7(3x-5)=140 | | X/4+2x/8=x | | -1/30+1/5x=10/19x×5/19 | | -3x-1/2x=-21 | | (x-1)^2+(2x-4)^2=34^2 | | -4x-7=5+11 | | -1/6x+1=3 | | 6`(t-2)=2t+2 | | 0.3(480)+0.55x=0.4(x+480) | | 5x+9=3x-29 | | F(x)=2/3x+3 | | -5(16x+400)=-360 | | 6x=(x+3) | | -1/2r-12=-28 | | 3^k-2+7=82 | | 9-2x+15=35 | | 17x15=x | | -60=-7x-4 | | Y-4=10(x+4) | | .25x=1614 | | -14.1-x=16.9 | | -80=-100+x | | 1/2g+6=-1 | | 3x=10=x=90 | | 11y=13y^2-2 | | -x-18=x |