y+4(6y+4)=16(y+1)7y

Simple and best practice solution for y+4(6y+4)=16(y+1)7y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y+4(6y+4)=16(y+1)7y equation:


Simplifying
y + 4(6y + 4) = 16(y + 1) * 7y

Reorder the terms:
y + 4(4 + 6y) = 16(y + 1) * 7y
y + (4 * 4 + 6y * 4) = 16(y + 1) * 7y
y + (16 + 24y) = 16(y + 1) * 7y

Reorder the terms:
16 + y + 24y = 16(y + 1) * 7y

Combine like terms: y + 24y = 25y
16 + 25y = 16(y + 1) * 7y

Reorder the terms:
16 + 25y = 16(1 + y) * 7y

Reorder the terms for easier multiplication:
16 + 25y = 16 * 7y(1 + y)

Multiply 16 * 7
16 + 25y = 112y(1 + y)
16 + 25y = (1 * 112y + y * 112y)
16 + 25y = (112y + 112y2)

Solving
16 + 25y = 112y + 112y2

Solving for variable 'y'.

Combine like terms: 25y + -112y = -87y
16 + -87y + -112y2 = 112y + 112y2 + -112y + -112y2

Reorder the terms:
16 + -87y + -112y2 = 112y + -112y + 112y2 + -112y2

Combine like terms: 112y + -112y = 0
16 + -87y + -112y2 = 0 + 112y2 + -112y2
16 + -87y + -112y2 = 112y2 + -112y2

Combine like terms: 112y2 + -112y2 = 0
16 + -87y + -112y2 = 0

Begin completing the square.  Divide all terms by
-112 the coefficient of the squared term: 

Divide each side by '-112'.
-0.1428571429 + 0.7767857143y + y2 = 0

Move the constant term to the right:

Add '0.1428571429' to each side of the equation.
-0.1428571429 + 0.7767857143y + 0.1428571429 + y2 = 0 + 0.1428571429

Reorder the terms:
-0.1428571429 + 0.1428571429 + 0.7767857143y + y2 = 0 + 0.1428571429

Combine like terms: -0.1428571429 + 0.1428571429 = 0.0000000000
0.0000000000 + 0.7767857143y + y2 = 0 + 0.1428571429
0.7767857143y + y2 = 0 + 0.1428571429

Combine like terms: 0 + 0.1428571429 = 0.1428571429
0.7767857143y + y2 = 0.1428571429

The y term is 0.7767857143y.  Take half its coefficient (0.3883928572).
Square it (0.1508490115) and add it to both sides.

Add '0.1508490115' to each side of the equation.
0.7767857143y + 0.1508490115 + y2 = 0.1428571429 + 0.1508490115

Reorder the terms:
0.1508490115 + 0.7767857143y + y2 = 0.1428571429 + 0.1508490115

Combine like terms: 0.1428571429 + 0.1508490115 = 0.2937061544
0.1508490115 + 0.7767857143y + y2 = 0.2937061544

Factor a perfect square on the left side:
(y + 0.3883928572)(y + 0.3883928572) = 0.2937061544

Calculate the square root of the right side: 0.541946634

Break this problem into two subproblems by setting 
(y + 0.3883928572) equal to 0.541946634 and -0.541946634.

Subproblem 1

y + 0.3883928572 = 0.541946634 Simplifying y + 0.3883928572 = 0.541946634 Reorder the terms: 0.3883928572 + y = 0.541946634 Solving 0.3883928572 + y = 0.541946634 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.3883928572' to each side of the equation. 0.3883928572 + -0.3883928572 + y = 0.541946634 + -0.3883928572 Combine like terms: 0.3883928572 + -0.3883928572 = 0.0000000000 0.0000000000 + y = 0.541946634 + -0.3883928572 y = 0.541946634 + -0.3883928572 Combine like terms: 0.541946634 + -0.3883928572 = 0.1535537768 y = 0.1535537768 Simplifying y = 0.1535537768

Subproblem 2

y + 0.3883928572 = -0.541946634 Simplifying y + 0.3883928572 = -0.541946634 Reorder the terms: 0.3883928572 + y = -0.541946634 Solving 0.3883928572 + y = -0.541946634 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.3883928572' to each side of the equation. 0.3883928572 + -0.3883928572 + y = -0.541946634 + -0.3883928572 Combine like terms: 0.3883928572 + -0.3883928572 = 0.0000000000 0.0000000000 + y = -0.541946634 + -0.3883928572 y = -0.541946634 + -0.3883928572 Combine like terms: -0.541946634 + -0.3883928572 = -0.9303394912 y = -0.9303394912 Simplifying y = -0.9303394912

Solution

The solution to the problem is based on the solutions from the subproblems. y = {0.1535537768, -0.9303394912}

See similar equations:

| -30=3x+4x+5 | | 4x+4=7x+4 | | 8(x+4)=9+8x | | 3(2k+1)=4(k+2)-1 | | -6-5x=-51 | | 3j+12=2(2j+6) | | 3(2x-8)=2(x+9) | | -10+5x=0 | | -9+7x=-37 | | 19=5(x-2)-(x-5) | | 25-x=24 | | -5x+4=-11 | | 4v=3t+6 | | 1x+1y=3.5 | | 2y-9=4y+5 | | 3u^2=12u-6 | | 42-x=15 | | 5x=11-6 | | 15x-(5x-6)=76 | | 3t=12-t | | 19-6x=-23 | | 19-6x=23 | | 8x-9+3x=12x-15 | | -7-4x=-23 | | 3(y+7)=4(y-5) | | (25x^2)-(60xy)+(36y^2)= | | 5(x-5)+x=6(x-5)+5 | | (1)-16a^2= | | 6x-7-2x=x+7+x | | 1-16a^2= | | 7x-2(x-5)=5(x+1)+9 | | 4(x-9)+x=5(x-9)+9 |

Equations solver categories