If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y+4y^2=11
We move all terms to the left:
y+4y^2-(11)=0
a = 4; b = 1; c = -11;
Δ = b2-4ac
Δ = 12-4·4·(-11)
Δ = 177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{177}}{2*4}=\frac{-1-\sqrt{177}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{177}}{2*4}=\frac{-1+\sqrt{177}}{8} $
| x+29=4x-4 | | a+2a+4=5a-8 | | y+4.2=11 | | 38.87=C+0.50x | | 4+26x+33x-1=180 | | 4+26x=33x-1 | | –1+3c=5 | | x^2=8-4 | | 6x-18=4(2x-3)- | | -10x=135 | | -25x+10=19x-28 | | x−1.75=−19x= | | -3(5c+2)-4=-70 | | 3x^2+18x+10=-2 | | x/33=14/20 | | 12t+44=20 | | 5x-8329=1398474 | | 12x+9-6x=15 | | 800-0.75p=6.00-1.25p | | 3(2d-1)=4d(d-2)+5 | | 2(x-5)=6. | | (t+10)(t+20)+t=180 | | 3(x+2)=18. | | 11/2x=11/4 | | –5u+–4u+3u+10u−–5u=–9 | | 44=x-7 | | 17c-15c+4c-18c+13c=-15 | | 3(2-6m)=(-15)+3m+6 | | 7n+n-4n-3n=4 | | 6x+9+3+22x=180 | | 6x+9=3+22x | | 9r^2-10r+3=0 |