y+4y=32/y=8

Simple and best practice solution for y+4y=32/y=8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y+4y=32/y=8 equation:



y+4y=32/y=8
We move all terms to the left:
y+4y-(32/y)=0
Domain of the equation: y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
y+4y-(+32/y)=0
We add all the numbers together, and all the variables
5y-(+32/y)=0
We get rid of parentheses
5y-32/y=0
We multiply all the terms by the denominator
5y*y-32=0
Wy multiply elements
5y^2-32=0
a = 5; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·5·(-32)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*5}=\frac{0-8\sqrt{10}}{10} =-\frac{8\sqrt{10}}{10} =-\frac{4\sqrt{10}}{5} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*5}=\frac{0+8\sqrt{10}}{10} =\frac{8\sqrt{10}}{10} =\frac{4\sqrt{10}}{5} $

See similar equations:

| x+7.8=11.9 | | 40-5x=3x-16 | | 19+4.5x=10+5.75x | | 11x-6=12x+2 | | 5(2x+8)x=3 | | 18=1.5+y= | | 12=f/8 | | x.4x=69.24* | | 8x-23x=40 | | 3x+5=112 | | w/11=9 | | 2(7-x)=3(x) | | 2/5r+4=-4 | | x.12x=15.80* | | |5x+6/7|=-8 | | n-7=29 | | 4x+2=2x-21 | | 4x-4-5x=7-x+5 | | 1-4/3x=1/2(-x+7) | | 7x-68=3x | | 12x+666=0 | | -145-x=11-3x | | 41/4x=17 | | -5(x-2=-25 | | -2/5x+1/3+x=2/5 | | 320-32x=0 | | 6(t+2)=2(2t-3) | | -32=3+49(d-5) | | 9(x-4)+33=9x-2 | | 90=6g | | 611=13k | | 72+4v=12v |

Equations solver categories