y/6y-10y-11=8y-2y+29

Simple and best practice solution for y/6y-10y-11=8y-2y+29 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y/6y-10y-11=8y-2y+29 equation:



y/6y-10y-11=8y-2y+29
We move all terms to the left:
y/6y-10y-11-(8y-2y+29)=0
Domain of the equation: 6y!=0
y!=0/6
y!=0
y∈R
We add all the numbers together, and all the variables
y/6y-10y-(6y+29)-11=0
We add all the numbers together, and all the variables
-10y+y/6y-(6y+29)-11=0
We get rid of parentheses
-10y+y/6y-6y-29-11=0
We multiply all the terms by the denominator
-10y*6y+y-6y*6y-29*6y-11*6y=0
We add all the numbers together, and all the variables
y-10y*6y-6y*6y-29*6y-11*6y=0
Wy multiply elements
-60y^2-36y^2+y-174y-66y=0
We add all the numbers together, and all the variables
-96y^2-239y=0
a = -96; b = -239; c = 0;
Δ = b2-4ac
Δ = -2392-4·(-96)·0
Δ = 57121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{57121}=239$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-239)-239}{2*-96}=\frac{0}{-192} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-239)+239}{2*-96}=\frac{478}{-192} =-2+47/96 $

See similar equations:

| 7(7+9)=8x(8x+6x) | | 7y-10=7y-10 | | 9x-12=3(4x-4) | | 45º+44º+xº=180 | | 4(3x-5)=7(2x+3 | | 2^2^n=300000 | | (2-3x)/2=-8 | | 0.02x^2+3x+72=0 | | 16y2+24y=9 | | -x+28=14 | | 17x−14x−2x+4x+3x=8 | | 7(z-4)=4z+2 | | 15x+1=4x-10 | | 9x-3x=4+2 | | 10x+6-4=8x-2 | | 6x+3-5=-3x+2 | | –24=2(c–6) | | 6(-(2/3)+-1(1/3)y)+6y=-6 | | 3x+200=3000 | | 5/12+24=x | | u4+20=22 | | (3n+5)=180 | | 2d-8=3d-7 | | 4+2a–5+3(a^2+2)=0 | | (z-12)/8=5 | | 5a-28=32 | | (b+7)/3=-9 | | (x-3)/6=5 | | 0=21c | | x/(-5)-12=8 | | -10/9+r=-7/18 | | 9^3x=27^4x+2 |

Equations solver categories